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Abstract

This article is based on a talk presented at RIMS on non-commutative Iwasawa
theory over global function fields. We begin by reviewing the origins of classical
Iwasawa theory and its extension to the non-commutative setting for elliptic curves
over number fields, as developed by Coates, Fukaya, Kato, Sujatha, and Venjakob.

We then turn to non-commutative Iwasawa theory for abelian varieties over a
global function field F' of characteristic different from p. For certain p-adic Lie ex-
tensions Fi, containing the cyclotomic Z,-extension FY¢, we establish the My (G)-
conjecture for the Pontryagin dual of the Selmer group, providing a crucial structural
result towards a non-commutative main conjecture. A key consequence of our essen-
tially cohomological methods is the vanishing of the relevant Iwasawa p-invariants.
This result settles Mazur’s conjecture in the function field setting.

Finally, we provide explicit computations comparing the generalised Euler char-
acteristics and Akashi series of the relevant Selmer groups.
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1 Introduction

Iwasawa theory provides a powerful framework for exploring the deep connections between
arithmetic objects, such as ideal class groups and Selmer groups, and analytic objects,
such as complex and p-adic L-functions. The theory was motivated by classical results
relating the p-part of the ideal class group of a number field to special values of the
Riemann zeta function. Building on these insights, Iwasawa developed a theory which
studies the growth of arithmetic invariants in infinite towers of number fields.

Today, Iwasawa theory plays a central role in modern number theory, particularly in
the study of elliptic curves and major conjectures, including the Birch—Swinnerton-Dyer
conjecture. In what follows, we begin by revisiting its classical origins in the work of
Kummer, then turn to its non-commutative developments due to Coates, Fukaya, Kato,
Sujatha, and Venjakob, and finally consider the case of global function fields.

This is the setting of our recent work [7], from which we survey several of our main
theorems. For clarity of exposition, some theorems are presented here in a more accessible
formulation. The complete arguments, along with further results, can be found in [7].

2 Classical Iwasawa Theory and its Origins

The origins of Iwasawa theory lie in the mid-19th century work of Ernst Kummer on
Fermat’s Last Theorem. Kummer’s strategy was to study the arithmetic of cyclotomic
fields Q(¢,), obtained by adjoining a primitive p-th root of unity to Q. During this work,
he uncovered a profound connection between the structure of their ideal class groups,
Clg,), and the values of the Riemann zeta function at negative odd integers.

Kummer observed that if the ring of integers of Q((,) were a unique factorisation domain
(meaning its class number is one), the proof would be straightforward. His crucial insight,
however, was to establish that a less restrictive condition is sufficient: the Fermat equation
2P + yP = 2P has no non-trivial integral solutions if p does not divide the class number
hq,) = #Clg(c,)- A prime p satisfying this condition is called regular. Note that proving
Fermat’s Last Theorem reduces to considering the exponents 4 and all odd primes, and
Kummer’s work successfully settled the theorem for all regular primes.

While today Fermat’s Last Theorem is known to be true for all exponents thanks to the
work of Wiles, Kummer’s criterion for regularity remains a beautiful and foundational
result. His theorem not only provides the conditional proof of Fermat’s Last Theorem



but also gives a concrete method for testing whether a prime is regular.

Theorem 2.1 (Kummer, 1850). Let p be an odd prime, and let hg,) denote the class
number of the pth cyclotomic field Q((,).

(1) If p 1 ho,), then the Fermat equation xP + y? = 2P has no non-trivial integral
solutions.

(2) We have p | hg,) if and only if p divides the numerator of at least one of the values

1 1 1
Equivalently, since ((1—2k) = —g—i’“, where Bsyy, denotes the 2kth Bernoulli number,

P | ha,) if and only if p divides the numerator of By, for some k with 1 < k < p%g.

This mysterious link between the p-part of the ideal class group of Q((,) and the p-
divisibility of special values of the zeta function was the primary inspiration for Kenkichi
Iwasawa. He sought to understand this relation more deeply, and it became the starting
point of what is now known as Iwasawa theory.

Iwasawa’s idea was to study, instead of the p-part of the ideal class group Clg,) in
isolation, the behaviour and growth of the p-primary part of the ideal class groups over
an infinite tower of number fields.

Fix a prime p, and consider the infinite cyclotomic extension
o0
Q(&pe) = U Q(&pm)-
n=1

This forms a Z)-extension of Q with Gal(Q({,~)/Q) = A x ', where A is cyclic of order
2 or p—1 according as p = 2 or p is odd, and I' is non-canonically isomorphic to Z,. The
unique Z,-extension of Q contained in Q(&,e) is called the cyclotomic Z,-extension of Q,
and is denoted by Q%°.
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Iwasawa’s strategy was to assemble the p-primary part A, := Clg,.)(p) of the class
groups from each layer of this tower into a single, unified object by taking the direct limit
A = liﬂAn and then the Pontryagin dual (the group of continuous homomorphisms
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into Q,/Z,) to turn the discrete infinite torsion group into a compact one. This leads to a
seemingly more complicated arithmetic object. Remarkably, this object comes equipped
with a rich algebraic structure: it is a module over an Iwasawa algebra. Given any
profinite group G, the Iwasawa algebra A(G) of G with coefficients in Z,, is defined by

A(G) = ImZ,[G/U]),

where U runs over open normal subgroups, and the inverse limit is taken with respect to
the natural projection maps. In this specific case, because I' ~ Z,, the algebra A(T") is
isomorphic to the ring of formal power series Z,[[T]] via taking a topological generator
of I to 1 + T'. We shall use such an isomorphism to identify A(I") with Z,[[T].

The structure theory for finitely generated A(I")-modules says, given such a module M,
M is pseudo-isomorphic to a direct sum of a standard form:

t

AT AT
Vo Are <p<§ =D (fj((T)’“j)' @

=1

Here, » > 0 is the rank, the y; > 0 are integers, and the f;(T") are distinguished polyno-
mials (monic polynomials where the coefficients of the non-leading terms are divisible by
p). The integers p; > 0 define the p-invariant, p = > 7, p; of M, and the degrees of these
polynomials f; determine its A-invariant, A = 22:1 kjdeg(f;). In the case where M is
known to be torsion, meaning its rank r is zero, we can define the characteristic ideal to
be the principal ideal char(M) = (p* H;zl fi(T)%) generated by the torsion part of the
decomposition. A generator of this ideal, denoted fy,(7T), is called a characteristic power
series of M. This is defined up to multiplication by a unit in A(I'). These are central
invariants in commutative Iwasawa theory.

3 Iwasawa theory of Elliptic Curves

The principles of Iwasawa theory were later extended to the setting of elliptic curves. In
this context, the central arithmetic object of interest is the Selmer group, which can be
viewed as an analogue of the ideal class group.

Let E be an elliptic curve over a number field F. For any algebraic extension L/F,
the p-primary Selmer group of E over L is a subgroup of the Galois cohomology group
H'(L, E,~) which is the kernel of the global-to-local restriction map:

Sel(E/L) := ker <H1(L, Ep) = [[H' (Lo E)) . (2)

Here, the product is taken over all places w of the field, and L,, denotes the completion
of L at the place w. The Galois module E,~ is the group of all p-power torsion points
of E/ (defined over a fixed algebraic closure of F'). We note that when L is an infinite
extension, the completion L,, is formed by taking the union of the completions of all finite
extensions of F' contained within L.



In Iwasawa theory, one studies these groups in the layers of a Z,-extension. Let F'<¢ =
FQ9¢ denote the cyclotomic Z,-extension of F', and write F,, for its n-th layer, where
Gal(F,/F) ~ Z/p"7Z. The Pontryagin dual of the direct limit of these groups, denoted
X (E/F%°), forms a module over the Iwasawa algebra A(T"), where I' = Gal(F'®°¢/F).

It is generally expected that it enjoys nice module-theoretical properties, namely Mazur’s
conjecture [16]:

Conjecture 1 (Mazur). Let E be an elliptic curve over a number field F with good
ordinary reduction at all primes above p. Then the ITwasawa module X(E/F%) is a
finitely generated torsion A(I")-module.

It is well known to be finitely generated, and establishing the torsionness is a foundational
step toward the Iwasawa main conjecture, which says that the characteristic ideal of the
module X (E/F%¢) is generated by a p-adic L-function that interpolates special values
of the complex L-function of E. Proving the main conjecture allows one to relate the
algebraic order of the Selmer group to analytic L-values, offering a powerful approach to
the Birch—Swinnerton-Dyer conjecture.

Remark 3.1. Mazur’s conjecture is known in many cases. Notably:

o When E/Q and F/Q are abelian extensions (a consequence of Kato’s work [12]).

o When Sel(E/F) is finite (a result of Mazur himself [16]).

In view of the structure theory for A(I')-module (1), Mazur’s conjecture can be reformu-
lated as follows:

X(E/F%e)
X(E/Fe)(p)

Mazur’s conjecture for X (E/F9°¢) < is a finitely generated Z,-module,

where X (E/F%)(p) denotes the p-primary submodule. If this holds, one can define the
characteristic ideal char(X (E/F%°)). The exact power of p dividing char(X(E/F%Y°))
is the p-invariant of X (E/F%°). A central conjecture, analogous to the classical case,
predicts that this p-invariant is zero. If the p-invariant is zero, then X (E/F°) is not
only a finitely generated torsion A-module but also a finitely generated Z,-module.

4 The Non-commutative Framework and the Iy (G)-
Conjecture

Coates, Fukaya, Kato, Sujatha and Venjakob generalised the theory to p-adic Lie exten-
sions F,, which contain F'°. For the discussions in the number field setting, I will let
p denote an odd prime. Let F' be a number field, and let E/F be an elliptic curve with
good ordinary reduction at p. We can define the p-primary Selmer group Sel(F/F,,) of



E over F,, and we write the following for the compact Pontryagin dual of the p-primary
Selmer group.
X(F/Fyx) = Homeont (Sel(E/Fy),Q,/Z,)

A natural question to ask is: To what extent, and in what way, does the arithmetic of E
over F'¢ relate to that of E over FL.7

Let G = Gal(F/F), I' = Gal(F°/F) and H = Gal(F,,/F%°). Motivated by the above
characterisation, Coates, Fukaya, Kato, Sujatha, and Venjakob introduced the following
category of Iwasawa modules.

Let My (G) denote the category of all finitely generated A(G)-modules M such that
M/M (p) is a finitely generated A(H)-module. In this setting, Coates, Fukaya, Kato,
Sujatha, and Venjakob conjectured that the category 9y (G) contains all torsion A(G)-
modules of arithmetic interest. More precisely, they posed the following conjecture, now
known as the My (G)-conjecture [5]:

Conjecture 2 (M (G)-conjecture). The wasawa module X (FE/FL,) lies in the category
Mu(G).

This is a key conjecture which allowed them to attach a characteristic element to the
Iwasawa module. This is essential for them to then formulate an Iwasawa main conjecture
in the non-commutative setting. Given any module M in the category MMy (G), one can
associate a generalisation of the characteristic power series known as the Akashi series
Ak(M) of M (see Section [7] (6])).

The 9y (G)-conjecture is still wide open, though there are known cases under p = 0
conditions [5]. In the next section, we make some observations in the case where F' is a
global function field and F,, satisfies some amiable conditions.

5 The Function Field Analogue and the Main Theorem

We now transition from number fields to the setting of global function fields. While
Conjectures (1] and [2] were stated for elliptic curves defined over number fields, they can
also be formulated for any abelian variety defined over a global function field F', and for
any prime p, including p = 2.

From now on, let p be any fixed prime. Let F' be a global function field of characteristic
¢ # p; that is, I is a finite extension of the field Fy(T") of rational functions in one
variable over the finite field Fyr with ¢" elements. We can similarly define the cyclotomic
Zy-extension F'Y¢ of F', obtained by adjoining to F' the unique Z,-constant field extension
Fp~ of F.

Let F, denote a p-adic Lie extension of F', that is, a Galois extension over F' whose Galois

group G = Gal(F/F) is a p-adic Lie group of positive dimension. We shall call a p-adic
Lie extension F, of F' admissible if it satisfies the following conditions:
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(i) F is unramified outside a finite set of primes of F;
(ii) F contains the cyclotomic Z,-extension F'%° of F

(iii) G has no element of order p.

Condition (iii) ensures that G has finite p-cohomological dimension which coincides with
the dimension of G as a p-adic Lie group, by a fundamental result of Lazard [14] and
Serre [21].

Our first main result is as follows:

Theorem 5.1. Let p be any prime. Let A be an abelian variety over a global function
field F with characteristic prime to p, and let F/F be an admissible p-adic Lie exten-
sion. Then the My (G)-conjecture holds for the Pontryagin dual X(A/Fy) of the Selmer
group Sel(A/F,). Furthermore, X(A/F%°) has u-invariant zero, and the generalised pi-
invariant (in the sense of [9,127,13]) of X (A/Fy) is zero. In particular, Mazur’s conjecture

holds for A/F.

This settles Mazur’s conjecture and the 9y (G)-conjecture in the function field setting.
This stands in sharp contrast to the number field case where the p-invariant may be
positive (see [16, §10, Example 2|, [§]). Our results build on and contribute to a significant
body of work on Iwasawa theory over function fields (see, e.g., |3, 13, 18, 19} 20} 25 26, 28]);
a key feature of our approach is that it is essentially cohomological. We will give a sketch
of the proof and introduce two related results, referring the reader to our main paper 7]
for complete details.

6 A Cohomological Description of the Selmer Group

For the proof of the Theorem the following alternative description of Selmer groups
will be crucially used to study them as A(G)-modules.

Let S be a nonempty finite set of primes of F' containing all the primes where the abelian
variety A has bad reduction, and all the primes of F' which ramify in F.

Let Fg be the maximal extension of F, contained in a fixed separable closure £, which
is unramified outside S. By the choice of S, we know F, is contained in Fs. For any
extension K of F' contained in Fg, we write Gg(K) for the Galois group Gal(Fg/K).
When L is a finite extension of F', we define each prime v of F’

J(A/L) = D H (Lu, A)(p),
wlv

where w runs over all primes of L lying above v. Since L,, has characteristic different
from p, we have H'(L,, A)(p) ~ H'(Ly,, Ap~) by Kummer theory. We shall make this
identification without any further mention.



Let I_iw be a separable closure of L,. By choosing an embedding F C L,, we can view
Gal(L,/Ly,) as a subgroup of Gal(F'/L). We then have the following localisation map

As(A/L) : HN(Gs(L), Ape) = €D Jo(A/L) (3)

vES

induced by restriction.

For an infinite separable extension K of F' contained in Fg, we define
Jy(A/K) =lim J,(A/L),
H

where L runs over all finite extensions of F' contained in K and the limit is taken with
respect to the restriction maps. We similarly define the localisation map

As(A/K) = lim As(A/L).

We will use the following description of the Selmer groups, which can be proven in the
same way as in the case of elliptic curves over number fields (see [4, Lemma 2.3|).

Proposition 6.1. Let K be an extension of F' contained in Fs. Then Sel(A/K) satisfies
the exact sequence

0 — Sel(A/K) — H'(Gs(K), Apwe) "5 @D J,(A/K).

vES

In fact, a key technical result of our work is that the final localisation map in this sequence
is surjective. This is established in [7] using Jannsen’s spectral sequence [10), 11] and
Nekovat’s duality theorem [17, [I5], and it provides a crucial input for the comparison
formula of Akashi series presented in Theorem [7.3]

7 Generalised Invariants and Comparison Formulae

We now present two key results from our paper [7], which we state here for elliptic curves.
These results, which will be given as Theorem and Theorem provide comparison
formulae relating the generalised Euler characteristics and Akashi series for the extensions
Fy/F and F9¢/F. (For the more general treatment of abelian varieties and the proofs,

we refer the reader to [7].) To situate our work, we first recall foundational results by
Sechi and Zerbes.

Let Y be a discrete p-primary G-module. We say that Y has finite G-Euler characteristic
if the cohomology groups H(G,Y) are finite for all 4 > 0. In this case, we define its Euler
characteristic x(G, YY) to be the alternating product of the cardinality of these cohomology
groups:
i (=1
(G Y) =[Gy

i>0



The significance of the Euler characteristic in Iwasawa theory lies in its deep connection to
the algebraic structure of the corresponding Iwasawa module. In the classical commutative
setting where G ~ I and the dual module M = YV is a finitely generated torsion A(T')-
module with characteristic power series fy;(T), then the Euler characteristic of Y is finite
if and only if f3/(0) # 0. When this holds, we have the Euler characteristic formula:

X(G.Y) =1fu(0)],", (4)

where | - |, is the p-adic valuation of @, normalised so that |p|, = p~!. Analogously to the
number field case [6], 29] 30, B31], the G-Euler characteristic of Sel(E/F) is closely related
to the I'-Euler characteristic of Sel(E/F%°), where I' = Gal(F'“¢/F). Indeed, Gianluigi
Sechi proved the following theorem in his PhD thesis [20].

Theorem 7.1 (Sechi). Let F' be a global function field with characteristic £ > 5. Let
p > 5 be a prime different from (. Let E/F be an elliptic curve, and let S be the finite set
of primes of F' where E has bad, and not potentially good, reduction. Let Foo = F(Ep»)
and = = Gal(§o/F). If Sel(E/F) is finite, then the E-Euler characteristic of Sel(E/F )
18 given by

X(E,Sel(E/Fo)) = x(, Sel(E/F¥)) x [ [ [Lo(E, D),

veES
Here, L,(E,s) is the Euler factor of the complex L-function of E over F at v.

Subsequent work has built on Sechi’s result (see, e.g., [26], [2]); however, these advances
relied on the assumption that the Selmer group over the ground field F' is finite.

When E(F) is infinite, Sel(F/F.,) does not have finite G-Euler characteristic. To ad-
dress this, we introduce the generalised G-Euler characteristics, following the framework
developed by Zerbes for number fields [30]. This construction requires the admissibility
assumption (ii) that F¢ is contained in F. Let us denote H = Gal(F,,/F°). For the
computation and comparison of these generalised Euler characteristics, we introduce the
following condition:

Hypothesis (H). H'(H, E,~(F.)) is finite for all i > 0.
Alternatively, we could use the hypothesis that H* (U, Ey=(F.)) is finite for all i > 0,
where U is any open normal subgroup of H.

We remark that the condition (H) is satisfied by a wide class of p-adic Lie extensions, for
example, when one of the following conditions is satisfied:

(1) Fw = F(By) where B is an abelian variety over F’;
(2) Lie(H) is reductive.

Let W be a discrete p-primary I'-module. Then we have
HO(T,W)=W" HYT,W) = Wr,

9



and hence there is a map
ow : H'(D,W) — HYT,W), f+> residue class of f.
For a discrete p-primary G-module Y, we define
d’: H°(G,Y) = H(',Y") — HYI,Y") — HY(G,Y),

where the middle map is ¢yr and the last map is given by inflation. Similarly, for ¢ > 1,

define
d: H(G,Y)—» H'(T,H(H,Y)) — HYT,H'(H,Y)) — H*YG,Y),

where the first map is given by restriction and the middle map is equal to ¢g:(s,y). Note
that the first map is surjective since cd,(I') = 1. We define d™! to be the zero map.

For all : > 0, (H*(G,Y),d®) forms a cocomplex. Denote its cohomology by $°.

We say that the G-module Y has finite generalised G-Euler characteristic if $° is finite
for all + > 0. In this case, the generalised Euler characteristic is defined as the alternating
product

X(GY) =TT

i>0

Let S be a nonempty finite set of primes of F' containing all the primes where F has bad
reduction, and all the primes of F' which ramify in F,,. We define S’ to be the subset of
primes of S whose inertia group in G is infinite. We can now state the following result:

Theorem 7.2. Let p be any prime, and let F' be a global function field with char(F) # p.
Let F, be an admissible p-adic Lie extension of F with Galois group G = Gal(F/F).
Let E be an elliptic curve defined over F. Assume that I(E/F)(p) is finite and the
condition (H) holds. Then Sel(E/F) has finite generalised G-FEuler characteristic if and
only if Sel(E/F%°) has finite generalised I'-Euler characteristic. Moreover, if this is the
case, then

V(G Sel(E/Fx)) = x(T, Sel(E/F¥)) x [ ILoE, D)y 5)

ves’!

Here, for a prime v € S’, we denote by L,(E,s) the Euler factor of L—function of E at v

This theorem establishes the function field analogue of a result proven by Zerbes for
number fields in her PhD thesis. Our result may thus be viewed as a “fibre-product” of
the works of Sechi and Zerbes, both of whom conducted their doctoral research under the
supervision of John Coates.

The importance of this generalised Euler characteristic lies in its relation with Akashi
series introduced in [6], whose definition we now recall.

Denote by Q(I') the fractional field of A(T"). To each M in My (G), we attach a non-zero
element Ak(M) of Q(T'). It can be shown that the homology groups H;(H, M) are finitely
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generated torsion A(I')-modules. Let fy; € A(I') be a characteristic power series for
H;(H, M), and define
—1)?
Ak(M) =T 7 (6)
>0

This product is finite because H;(H, M) = 0 for ¢ > dim(H ), and it is well defined up to
multiplication by a unit in A(T), because each fy; is. We call Ak(M) the Akashi serie|
of M. It generalises the notion of characteristic elements: if M is a finitely generated
torsion A(I')-module (so we may view H = 1), then the Akashi series of M coincides with
the A(I")-characteristic element of M. In this case, we simply write fys for Ak(M).

Given a discrete p-primary G-module Y such that YV € 9y (G), we also denote the
Akashi series of YV by Ak(Y'), by abuse of notation. If ¥ has finite generalised G-Euler
characteristic, then its Akashi series satisfies

X(G.Y) = lay],",

where vy is the first non-zero coefficient of Ak(Y"), and the order of vanishing of Ak(Y') is
given by the alternating sum of the Z,-coranks of the homology groups H'(H,Y)". This
generalises the Euler characteristic formula [4

We have the following comparison formula for the Akashi series:

Theorem 7.3. Let p be any prime. Let A be an abelian variety defined over a global
function field F with char(F) # p. Let F/F be an admissible p-adic Lie extension.
Then we have

Ak (Sel(A/Fx)) Ak (Ap"O(FOO)>_1 = fSel(A/FCyc)prloo(Fcyc) H fro(ajree).,

ves’

We point out the striking symmetry in this formula. The Akashi series for the non-
commutative extension Fi,/F is determined by its commutative counterpart over F¢/F
corrected by local terms at the primes in S’.

8 Outline of the Proof of the Main Theorem

We end with a sketch of Theorem [5.1] The proof relies on tools from Galois cohomology.
We recall that S denotes a non-empty set of primes of F' containing those where A has
bad reduction and those that ramify in F,/F. Let Fs be the maximal extension of F'
unramified outside S. The Selmer group fits into the fundamental exact sequence of Galois
cohomology:

0 — Sel(A/Fu) = H'(Gs(Fa), Aye) = @D Ju(A/ Fuv),

veSs

'The term Akashi series was introduced by Coates, inspired by the Tale of Genji.
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where Gg(Fw) = Gal(Fs/F) and J,(A/F) denotes the local cohomology groups.

Thus, to prove that X (A/F,) is finitely generated over A(H), it suffices, by Nakayama’s
lemma and duality, to show that the H-invariants H*(Gg(Fx), Ap=)? is cofinitely gener-
ated over Z,. The core of the argument is to establish the following key cohomological

property.

Theorem 8.1. The Galois group Gs(F®°) has p-cohomological dimension 1, that is,
cdy(Gg(F¥°)) = 1.

This implies that H*(Gg(F<°), Ay=) = 0. Using the Hochschild-Serre spectral sequence
for the group extension 1 — Gal(Fs/Fy) — Gal(Fs/F¥°) — H — 1, which degenerates
due to the properties of an admissible extension, we find an exact sequence:

0— HY(H, Ape(Fy)) = HY(Gs(F¥), Ape) = HY (Gs(Fx), Ape ) — ...

Since the H-cohomology groups are cofinitely generated over Z,, the problem reduces to
showing that H'(Gg(F%°), Ap=) is cofinitely generated over Z,.

Again by Nakayama’s Lemma, this is equivalent to proving that the p-torsion subgroup
HY(Gg(F%¢), Ayo)[p] is finite. The long exact sequence in Galois cohomology arising from

the Kummer sequence 0 — A, — Ay 5 Ay — 0 gives a surjection:
HY(Gs(F°), Ap) = H'(Gs(F), Apee) [p].
The group on the left, H*(Gs(F<°), A,), is finite.

This establishes the required finiteness. Thus, we have shown that Sel(A/Fy) is a
cofinitely generated A(H)-module. This is equivalent to X(A/F,) being X-torsion by
[5, Proposition 2.3] for a certain Ore set Y. The vanishing of the generalised p-invariant
now follows from, for example, the proof of [3| Proposition 3.3 (i)] (see also |9, Lemma

2.7]). This completes the sketch of the proof of Theorem [5.1] O

We note that Theorem [8.1] crucially depends on the fact that F'is a global function field.
In contrast, if F' is a number field, we have cd,(Gg(F%°)) = 2.

Acknowledgements

The author would like to thank the organisers of the RIMS conference “Arithmetic aspects
of automorphic forms and automorphic representations” (January 2025) for the opportu-
nity to present this work. This work was supported by JSPS KAKENHI Grant Number
JP25K17227.

12



References

1]

2l

13l

4]

5]

6]

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

A.Bandini and M. Valentino, Control theorems for l-adic Lie extensions of global
function fields, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 4, 1065-1092.

A. Bandini and M. Valentino, Fuler characteristic and Akashi series for Selmer groups
over global function fields. J. Number Theory 193 (2018), 213-234.

D.Burns and O.Venjakob, On descent theory and main conjectures in mnon-
commutative Twasawa theory, J. Inst. Math. Jussieu 10 (2011), no. 1, 59-118.

J. Coates, Fragments of the GLy Iwasawa theory of elliptic curves without complex
multiplication, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in
Mathematics 1716 (Springer, Berlin, 1999) 1-50.

J.Coates, T.Fukaya, K.Kato, R.Sujatha, and O. Venjakob, The GLs main con-
jecture for elliptic curves without complex multiplication, Inst. Hautes Etudes
Sci. Publ. Math. no. 101 (2005), 163-208.

J. Coates, P.Schneider and R.Sujatha Links between cyclotomic and G Lo ITwasawa
theory, Doc. Math. (2003), 187-215 (Extra Volume: Kazuya Kato’s Fiftieth Birth-
day).

L-T.Deng, Y.Kezuka, Y-X.Li, M.F.Lim Non-commutative Iwasawa theory of
abelian varieties over global function fields, preprint.

M. J. Drinen, Finite submodules and Iwasawa p-invariants, J. Number Theory 93
(2002), no. 1, 1-22.

S.Howson, Fuler characteristics as tnvariants of ITwasawa modules, Proc. London
Math. Soc. (3) 85 (2002), no. 3, 634-658.

U. Jannsen, Twasawa modules up to isomorphism, in: Algebraic number theory, 171
207, Adv. Stud. Pure Math., 17, Academic Press, Inc., Boston, MA 1989.

U. Jannsen, A spectral sequence for Iwasawa adjoints, Miinster J. Math.7 (2014),
no. 1, 135-148.

K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Aster-
isque 295 (2004) pp. 117-290.

K. F. Lai, I. Longhi, T. Suzuki, K.-S. Tan and F. Trihan, On the pu-invariants of abelian
varieties over function fields of positive characteristic, Algebra & Number Theory 15
(2021), no. 4, 863-907.

M. Lazard, Groupes analytiques p—adiques, Inst. Hautes Etudes Sci.Publ. Math.,
No. 26 (1965), 389-603.

M. F.Lim and R. Sharifi, Nekovdr duality over p-adic Lie extensions of global fields,
Doc. Math. 18 (2013), 621-678.

13



[16] B.Mazur, Rational points of abelian varieties in towers of number fields, In-
vent. Math. 18 (1972), 183-266

[17] J. Nekovar, Selmer complexes, Astérisque No. 310 (2006), viii+559 pp.

[18] T.Ochiai and F. Trihan, On the Selmer groups of abelian varieties over function fields
of characteristic p > 0, Math. Proc. Cambridge Philos. Soc., Vol’ 146, Issue 1, (2009),
23-43.

[19] A.Ray, Iwasawa theory of fine Selmer groups associated to Drinfeld modules, accepted
for publication in Mathematika.

[20] G.Sechi, GLy Twasawa theory of elliptic curves over global function fields, PhD The-
sis, University of Cambridge, 2006.

[21] J.P.Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965),
413-420.

[22] J.P.Serre, Cohomologie Galoisienne, 5th edition,Lecture Notes in Mathematics,
Vol. 5, Springer, Berlin (1994)

[23] J.P.Serre, Local Algebra. Springer Monographs in Mathematics, Spring-Verlag,
Berlin, 2000.

[24] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog,
Seminaire Bourbaki, Vol. 9, Exp. No. 306, 415-440, Soc. Math. France, Paris, 1995.

[25] F.Trihan and D. Vauclair, On the non commutative Twasawa main conjecture for
abelian varieties over function fields, Doc. Math. 24 (2019), 473-522.

[26] M. Valentino, On Euler characteristics of Selmer groups for abelian varieties over
global function fields, Arch. Math. (Basel) 106 (2016), no. 2, 117-128.

[27] O.Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group,
J. Eur. Math. Soc. 4(3) (2002) 271-311.

[28] M. Witte, Non-commutative ITwasawa main conjecture, Int.J. Number Theory 16
(2020), no. 9, 2041-2094.

[29] S.Zerbes, Selmer groups over p-adic Lie extensions. I, J. London Math. Soc. (2) 70
(2004), no. 3, 586-608.

[30] S.Zerbes, Generalised Euler characteristics of Selmer groups, Proc. Lond. Math. Soc.
(3) 98 (2009), no. 3, 775-796.

[31] S.Zerbes, Akashi series of Selmer groups, Math. Proc. Cambridge Philos. Soc. 151
(2011), no. 2, 229-243.

14



	Introduction
	Classical Iwasawa Theory and its Origins
	Iwasawa theory of Elliptic Curves
	The Non-commutative Framework and the MH(G)-Conjecture
	The Function Field Analogue and the Main Theorem
	A Cohomological Description of the Selmer Group
	Generalised Invariants and Comparison Formulae
	Outline of the Proof of the Main Theorem

